Generalized Likelihood Ratio Statistics and Wilks Phenomenon
نویسندگان
چکیده
The likelihood ratio theory contributes tremendous success to parametric inferences. Yet, there is no general applicable approach for nonparametric inferences based on function estimation. Maximum likelihood ratio test statistics in general may not exist in nonparametric function estimation setting. Even if they exist, they are hard to find and can not be optimal as shown in this paper. We introduce the generalized likelihood statistics to overcome the drawbacks of nonparametric maximum likelihood ratio statistics. New Wilks phenomenon is unveiled. We demonstrate that a class of the generalized likelihood statistics based on some appropriate nonparametric estimators are asymptotically distribution free and follow χ2-distributions under null hypotheses for a number of useful hypotheses and a variety of useful models including Gaussian white noise models, nonparametric regression models, varying coefficient models and generalized varying coefficient models. We further demonstrate that generalized likelihood ratio statistics are asymptotically optimal in the sense that they achieve optimal rates of convergence given by Ingster (1993). They can even be adaptively optimal in the sense of Spokoiny (1996) by using a simple choice of adaptive smoothing parameter. Our work indicates that the generalized likelihood ratio statistics are indeed general and powerful for the nonparametric testing problems based on function estimation.
منابع مشابه
Generalized Likelihood Ratio Tests for Varying-Coefficient Models with Censored Data
In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null distribution follows a 2 distribution, with the scale constant and the number of degree of freedom being independent of nuisance parameters or functions, which is called the wilks...
متن کاملSieve Empirical Likelihood Ratio Tests for Nonparametric Functions
Generalized likelihood ratio statistics have been proposed in Fan, Zhang and Zhang [Ann. Statist. 29 (2001) 153–193] as a generally applicable method for testing nonparametric hypotheses about nonparametric functions. The likelihood ratio statistics are constructed based on the assumption that the distributions of stochastic errors are in a certain parametric family. We extend their work to the...
متن کاملNonparametric Inferences for Additive Models
Additive models with backfitting algorithms are popular multivariate nonparametric fitting techniques. However, the inferences of the models have not been very well developed, due partially to the complexity of the backfitting estimators. There are few tools available to answer some important and frequently asked questions, such as whether a specific additive component is significant or admits ...
متن کاملOn Multivariate Likelihood Ratio Ordering among Generalized Order Statistics and their Spacings
The most of the results obtained about stochastic properties of generalized order statistics and their spacings in the literature are based on equal model parameters. In this paper, with less restrictive conditions on the model parameters, we prove some new multivariate likelihood ratio ordering results between two sub-vectors of GOS's as well as two sub-vectors of $p$-spacings based on two con...
متن کاملComments on: Nonparametric inference with generalized likelihood ratio tests
This is a very interesting paper reviewing the technique for testing semiparametric hypotheses using GLR tests. I’d like to supplement Fan and Jiang’s review with some cautions and a somewhat different point of view. 1 The Wilks phenomenon Rigorous results for smooth parametric models, see, for example, Bickel and Doksum (2005, Chap. 6) do say that, if θ̂ , η̂ or, equivalently, (θ̂η̂, η̂) are MLE’s,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000